
PHYSICAL REVIEW E, VOLUME 63, 061209
Light-scattering spectra of supercooled molecular liquids
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The light-scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The
wave-vector and scattering-angle dependencies are given in the most general case and the change of the
spectral features from liquid to solidlike is discussed without phenomenological model assumptions for~gen-
eral! dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency
dependent transport kernels, generalized thermodynamic derivatives, and the background spectra.
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I. INTRODUCTION

Light scattering is a powerful tool to study the dynami
of dense~transparent! materials@1#. The fluctuations of the
dielectric tensor for wave-vector transferq are measured
where the corresponding wavelength can be considered l
compared to molecular length scales. In this case the th
retical description of the light spectra simplifies as it suffic
to determine the lowest orders in wave vectorq only. The
wave vector and scattering-angle dependence of the sca
ing cross sections thus can be determined.

Focusing on low frequencies, the hydrodynamic appro
can be used to calculate the spectral shapes. For
polarized-light-scattering spectra of gases and liquids, the
sumption that dielectric fluctuations are dominantly cau
by density fluctuations leads to the well-known Rayleig
Brillouin spectra. The corresponding hydrodynamic depo
ized spectra were first obtained within simplified models
Andersen and Pecora@2# and Keyes and Kivelson@3#, in the
latter case, under the assumption that fluctuations in the
entations of the molecules cause the dielectric variations
observed experimentally in molecular liquids, a negat
central line appears called ‘‘Rytov dip’’@4,5#.

The spectra, in particular the depolarized ones, cha
qualitatively if the relaxation times of the structural dynam
ics increase upon cooling the liquids. For the polarized sp
tra, Mountain introduced a frequency-dependent longitud
viscosity in order to model the additionally appearing cen
line @6#. In the depolarized-light-scattering spectra transve
sound peaks become visible as expected from hydrodyna
calculations for solids@7#. Within phenomenological model
including nonhydrodynamic variables, the changes of
spectra from liquidlike at high to solidlike at low temper
tures could be explained@8–13#. However, assumption
about the included slow variables and about phenomenol
cal kinetic equations coupling their time dependencies, w
required. The introduction of memory functions, in most d
tail in the recent work of Dreyfuset al. @12,13#, has relaxed
the requirement to identify and include all slow variables b
still uses phenomenological equations to couple rotatio
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and translational degrees of freedom.
Here, we clarify that generalized hydrodynamics a

symmetry considerations suffice to explain the ligh
scattering spectra qualitatively as they change from liquid
solidlike. The results will be derived without any assum
tions about nonhydrodynamic variables~and their couplings!
and will also not depend on specific light-scattering mec
nisms nor molecular parameters like shape, dipole mom
polarizabilities nor chirality. The set of slow variables w
consider are the standard slow hydrodynamic variables
liquids, densityn(q), current densityj (q), and temperature
Q(q) ~connected to energy conservation!, and the slow
structural relaxation of supercooled liquids enters via a f
memory functions. We thus provide a general framework
the analysis of light-scattering spectra in supercooled m
lecular liquids, which we expect will prove useful either fo
phenomenological discussions using fit functions for
memory kernels—we will list all restrictions on these
functions—or for the consideration of specific scatteri
mechanisms. Our central technique for simplifying the sp
tra consists in small-wave-vector expansions of the mem
functions as should be appropriate for disordered syste
Thus we adopt the idea of generalized hydrodynamics, wh
extends the regular hydrodynamic approach to larger
quencies. In detail, we use the one suggested by Go¨tze and
Latz @14# as it provides a physically reasonable descript
of glassy systems. Finally, we also derive Green-Kubo f
mulas, which enable e.g., computer simulations, to determ
the memory functions and thus the complete spectra direc

Our assumptions pertain to the systems under consi
ation and can be tested experimentally: We consider only
lowest nontrivial orders in wave-vector transferq, in order to
find general results for the light scattering from amorpho
dielectric, macroscopically isotropic and optically inactiv
materials within the framework of linear response, classi
statistical mechanics, and classical electromagnetism.
conditionqa!1, wherea denotes either a typical molecula
size, the average particle distance, or a collective correla
length, appears well satisfied for supercooled molecular
uids but excludes studies of critical phenomena. Electrom
netic retardation also can be neglected forv!cq, wherec is
the speed of light.

The general formulas for the spectra and constitut
equations are presented in Sec. II. Section III lists the cen

r-
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results that are discussed in Sec. IV. The results for the
polarized spectra are compared to previous theoretical
proaches in Sec. V, and conclusions in Sec. VI summa
our results. More technical aspects are contained in App
dices A and B, and Appendix C outlines the application
our general results to specific light-scattering mechanism

II. GENERAL FORMULAS

A. Dielectric fluctuations

In a light-scattering experiment a laser beam at freque
v i induces a polarization in a transparent sample, wh
starts to radiate. For a homogeneous sample the rad
waves interfere constructively only in the forward directi
at the same frequency as the incident wave. However,
dielectric permeability fluctuates in space and time around
average and therefore additionally a~diffusive! scattering oc-
curs. In general, this scattering spectrum reflects the dyna
cal processes in the sample and depends on the frequen
the incident,v i , as well as the scattered wave,v f . A sim-
plification is possible if one considers only small frequen
shifts, v5v i2v f with uvu!v i . Then dynamical dielectric
fluctuations„e i j (q,t)uekl(q)… determine the scattering cros
sections completely@7#. Here the Kubo scalar produc
„A(t)uB…5(1/kBT)^dA(t)* dB&, is used, withT temperature
andkB Boltzmann’s constant.

The fluctuationde i j (q,t) has even time-reversal symm
try, is a symmetric tensor of second rank, and, as Fou
transform of a real quantity, fulfillse i j (2q,t)5e i j (q,t)* . In
particular, the long-wavelength limite i j (q→0,t) is real. Dif-
ferent Cartesian componentsi , j ,k,l are picked out depend
ing on the polarization directions of the incoming and sc
tered light @1#; see Appendix A for more details. Th
dynamical evolution is given by the LiouvillianL via ] tA
5 iLA. A Laplace transformation—conventionf (z)
5 i *0

`dt eiztf (t) for I z.0—thus leads to the problem t
calculate, forq→0, the matrix elements of:

„e i j ~q,z!uekl~q!…5S e i j ~q!U 1

L2zUekl~q! D . ~1!

The spectra at frequencyv then are given by the imaginar
part of„e i j (q,v1 i0)uekl(q)… denoted by„e i j (q,v)uekl(q)…9.

B. Generalized hydrodynamics

Light scattering measures large wavelength dielec
fluctuations. Even thoughqa!1 can thus be assumed, th
limit q→0 cannot be performed naively in Eq.~1!. Because
of density, momentum, and energy conservation, there
poles in the resolventR(z)5(L2z)21, which shift to van-
ishing frequency in this limit@15#. Using the Zwanzig–Mori
formalism, these hydrodynamic low-frequency features
be identified. One introduces the reduced resolvent

R8~z!5Q
1

QLQ2z
Q, ~2!
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where the projectorQ512P projects perpendicular to th
hydrodynamic modes:

P5
un~q!)~n~q!u
„n~q!un~q!…

1
uQ~q!)~Q~q!u
„Q~q!uQ~q!…

1(
i

u j i~q!)~ j i~q!u
„j i~q!u j i~q!…

.

~3!

The standard hydrodynamic formulas are obtained in
approach if the reduced resolventR8(z) is treated in a Mar-
kovian approximation, replacing its matrix elements w
frequency-independent transport coefficients@15#. General-
ized hydrodynamics differs from this by retaining the fr
quency dependence ofR8(z) but still neglecting its wave-
vector dependence. This generalization is required for liqu
at lower temperatures as the structural relaxation slows d
strongly.

Following Ref. @14# we identify the fluctuating tempera
ture Q(q) with the kinetic-energy fluctuations,eK(q), that

are orthogonal to the density fluctuations,cV
0Q(q)

5QneK(q)5eK(q)2n(q)(eKun)/(nun). Here cV
053kB/2

abbreviates the specific heat per particle of the kinetic
grees of freedom, andQn is the projector orthogonal to th
density. Conservation of the total energye(q)5eK(q)
1eP(q) implies

cV
0LQ~q!5q je

L~q!2q jL~q!
~eun!

~nun!
2LQeP~q!, ~4!

where superscriptsL indicate the longitudinal part,j L

5q• j /q, eP(q) is the potential energy, andje(q) the total-
energy current. Note that since„Q(q)ueP(q)…50 one can
replaceQneP(q)5QeP(q). The hydrodynamic variables ar
orthogonal with normalizations:„n(q)un(q)…5NS(q)/kBT,
„j k(q)u j l(q)…5(N/m)dkl and „Q(q)uQ(q)…5NT/cV

0 . Here,
n is the average density ofN molecules,m the molecular
mass, andS(q) is the equilibrium center-of-mass structu
factor;dkl is Kronecker’s symbol. Throughout the followin
we will neglect wave-vector dependencies caused by m
lecular length scales, and replace, e.g., the structure facto
its homogeneous limit given by the isothermal compressi
ity kT : S(q)5S(0)1O„(qa)2

… with S(0)5nkBTkT .
Considering, in generalized hydrodynamics@16#, the fluc-

tuating temperature instead of energy fluctuations rests u
the experimental observation that the heat conduction
glasses and liquids is not drastically different. This aspec
discussed in Refs.@14,17# where the generalized hydrody
namics also is tested by molecular-dynamics simulatio
This formulation of generalized hydrodynamics accou
straightforwardly for a frequency-dependent isochoric s
cific heat.

C. Decomposition of dielectric fluctuations

The exact resolvent calculus sketched in the previous
tion thus provides a reformulation of Eq.~1!, see Eq.~A14!
in Ref. @14#. The reduced dynamicsR8(z) and the projector
P, which projects onto the hydrodynamic variables, appe
9-2
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LIGHT-SCATTERING SPECTRA OF SUPERCOOLED . . . PHYSICAL REVIEW E63 061209
„e i j ~q!uR~z!uekl~q!…5„e i j ~q!uR8~z!uekl~q!…1„e i j ~q!u

3@12R8~z!L#PR~z!P

3@12LR8~z!#uekl~q!…. ~5!

Thus the coupling of the dielectric fluctuations to the hyd
dynamic variables is found; explicitly it is given when wri
ing out PR(z)P in Eq. ~5!. Additionally there is a back-
ground spectrum, the first term on the right-hand side of
~5!.

Since the hydrodynamic modes have been projected
~generalized! hydrodynamics postulates that the limitq→0
in R8(z) can now be performed safely. This leads to t
well-known result for Raman scattering@7#: The background
spectrum consists of scalar, and symmetric-traceless-te
scattering

„e i j ~q!uR8~z!uekl~q!…5S~z!d i j dkl1T ~z!S d ikd j l 1d i l d jk

2
2

3
d i j dklD1O~q2!. ~6!

Explicit expression forS(z) and T(z) can be obtained by
choosing special linear combinations of the dielectric tens
Let s005@exx1eyy1ezz#/3 denote the long-wavelength lim
of the scalar part andt205@2ezz2exx2eyy#/A12 the~helic-
ity! n50 component of the corresponding spherical ten
t2n ~the prefactors are conventional!. Then, S(z)
5(s00uR8(z)us00) and T(z)5(t20uR8(z)ut20) are the scalar
and the tensor correlations. Let us state here explicitly
we assume that the long-wavelength static correlations of
dielectric tensor are characterized by two numbers only
are independent of the direction ofq→0.

Both spectral contributionsS(z),T (z) are autocorrelation
functions of real variables with even time inversion symm
try. Their spectra thus are even and non–negative.

In order to simplify the discussion of the couplings to t
hydrodynamic variables in Eq.~5!, it is useful to consider the
corresponding generalized constitutive equations@14,15#.
These describe the temporal decay of the deviations
variable, say inde i j (q,t), produced by an adiabatic pertu
bation with external fields coupling to the conserved va
ables, after the perturbations are switched off at timet50:

^de i j ~q,t !&5(
a

5 F ^dAa~ t !&„Aaue i j ~q!…/~AauAa!

2E
0

t

dt^dAa~t!&„Aau iLR8~ t

2t!ue i j ~q!…/~AauAa!G , ~7!

where the~orthogonal! hydrodynamic variables are abbrev
ated: A15n(q),A25Q(q), A35 j x(q),A45 j y(q), and A5
5 j z(q). The special choice of the external perturbation co
sidered in the constitutive equation, Eq.~7!, prepares a fluc-
tuation in ^de i j (q,t)&, which decays slowly because it re
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quires decay of fluctuations of the conserved variables
large wavelengths,O(1/q). Thus the time evolution of
^de i j (q,t)& in Eq. ~7!, is determined by time-dependent co
plings to the generalized hydrodynamics of the distinct va
ables. As seen via a Laplace transformation, the ident
couplings appear in Eq.~5! as in Eq.~7!, expressing that via
these couplings, close to equilibrium, dielectric fluctuatio
at long wavelengths acquire slow hydrodynamic comp
nents. Equation~5! further identifies the nonhydrodynami
components contributing to the background. The first te
on the right-hand side of Eq.~7! describes static or instanta
neous couplings, whereas the second term describes dyn
couplings that need time to build up and may be charac
ized by a finite response time. These will become import
when approaching the glass transition upon cooling as t
the structural relaxation times increase.

Density fluctuations are coupled to the dielectric fluctu
tions statically via the scalar scattering mechanism only
follows from Eq. ~7! when inserting the projectorP from
Eq. ~3!:

„n~q!u@12LR8~z!#ue i j ~q!…5~nus00!d i j 1O~q2!. ~8!

The dynamic coupling vanishes becauseLn(q)5qkj k(q) is
again a hydrodynamic variable. Furthermore the scalar d
sity cannot couple to the dielectric tensor fluctuationst2n in
the limit q→0.

Similar arguments hold for the coupling of the tempe
ture to the dielectric fluctuations. Since the kinetic energy
not conserved, there is a dynamic coupling in addition to
static one. In order to guarantee conservation of the t
energy, Eq.~4! is used. Observing (LQePuR8(z)5(QePu
1z(ePuR8(z) and rearranging terms one finds to lowest o
der in q

cV
0
„Q~q!u@12LR8~z!#ue i j ~q!…

5d i j $~Qneus00!1z„ePuR8~z!us00…%1O~q!. ~9!

Further couplings of orderq can be ignored. The dynami
coupling in Eq.~9! arises from the separation of the tota
energy fluctuations into fast kinetic and~possibly! slow po-
tential ones. Thus the simplified handling of the reduced
solvent in this generalized hydrodynamics has to be paid
an additional frequency-dependent coupling to tempera
fluctuations.

Finally for the coupling of dielectric fluctuations to cu
rent fluctuations

„j k~q!u@12LR8~z!#ue i j ~q!…

52(
l

ql„tkl~q!uR8~z!ue i j ~q!…/m, ~10!

one finds a purely dynamical coupling, as first recogniz
within so-called two variable models@2,3#. A static coupling
is excluded, since the currentsj k and the dielectric tensore i j
have different time-reversal symmetry. The dynamic co
pling to the stress tensor,tkl , which appears because of mo
9-3
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T. FRANOSCH, M. FUCHS, AND A. LATZ PHYSICAL REVIEW E63 061209
mentum conservation,Lj k(q)5( lqltkl(q)/m, can be evalu-
ated in the long-wavelength limit:

„tkl~q!uR8~z!ue i j ~q!…

5„puR8~z!us00…d i j dkl1„t20uR8~z!ut20…

3Fd ikd j l 1d i l d jk2
2

3
d i j dklG1O~q2!. ~11!

Here p5@txx1tyy1tzz#/3 and t205@2tzz2txx2tyy#/A12
denote the long-wavelength limits of the pressure and of
transversal stress tensor.

According to the basic assumption of~generalized! hydro-
dynamics@14,15#, one has to keep terms only to the ord
indicated, the remaining ones are assumed to be regular
respect to frequencyz in the limit q→0.

III. RESULTS

From Eqs.~5! to ~11! the light-scattering spectra follow i
a scattering geometry is chosen and the appropriate te
elements are calculated; see Appendix A for the used ge
etry. Polarizations vertical toV, or in the scattering planeH,
are considered, where the standard abbreviationI io denotes
polarizations for incoming and outgoing light. The spec
depend on q, v and scattering angleu. We find
I HV(q,u,v)5I VH(q,u,v) as predicted by Rayleigh’s rec
procity theorem@1#.

A. Total scattered intensities

The total scattered intensities~except for standard coeffi
cients@1#! can be obtained directly from Eq.~A4! in Appen-
dix A and consist of scalar and tensor scattering@7#:

I VV~q,u!5~s00us00!1
4

3
~ t20ut20!, ~12!

I VH~q,u!5~ t20ut20!, ~13!

I HH~q,u!5cos2u~s00us00!1S 11
1

3
cos2u D ~ t20ut20!.

~14!

The intensities are wave-vector independent as the limitqa
!1 is considered in systems where all molecular correlati
are short ranged. The conservation laws affect the spe
shapes only, i.e. cause low-lying hydrodynamic lines, but
not lead to long-ranged static correlations. Concurrently,
static couplings of the conserved variables to the dielec
fluctuations in Eqs.~8! to ~10! are q independent for smal
wave numbers. See Sec. IV, for why these results app
violated when considering the hydrodynamic limits.

B. Depolarized spectrum

Using the decomposition of the off-diagonal dielect
fluctuations, Eqs.~7!, ~10!, and ~11!, one can identify a dy-
namic coefficient,aVH(z), which describes the coupling t
the generalized hydrodynamic variables:
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aVH~ t !5
1

N
„t20uR8~ t !ut20…. ~15!

It is a generalized elasto–optic or Pockels’ constant fami
from light scattering in solids@7#, and is a real and symmet
ric function of time, as the two tensor variables determini
it are real with even time parity. Its Laplace transfor
aVH(z), therefore has an even spectrumaVH9 (v). This Pock-
els’ constant describes the dynamic coupling of the tra
verse current into the dielectric fluctuations and the const
tive equation becomes

^deVH~q,t !&52 iq cos
u

2E0

t

dt aVH~ t2t!^d j y~q,t!&.

~16!

From Eqs.~5! and ~6! follows the general result for the de
polarized spectrum:

„eVH~q,z!ueVH~q!…5T~z!1q2cos2
u

2
aVH~z!2Cj j

T ~q,z!.

~17!

Here Cj j
T (q,z)5„j T(q,z)u j T(q)… denotes the correlation

function of the transversal current fluctuations. The spectr
consists of a background arising from the symmetric scat
ing in Eq. ~6!, which commonly is discussed as a Ram
line, and of couplings to the current fluctuations. Naive
evaluating the depolarized spectrum at vanishing wave v
tor would neglect this additional contribution. It is small,
order O(q2), but is characterized by a time scale that d
verges in the hydrodynamic limitq→0, and therefore domi-
nates the low-frequency spectrum. The full current corre
tors appear in Eq.~17!, which stresses that no assumptio
about translational-rotational coupling are required in or
to derive Eq.~17!. Explicitly this has been shown by th
derivation of Eq.~17! for a liquid of spherical particles in
Ref. @19#, which was tested in a simulation@20#.

C. Polarized spectra

For theVV spectrum, Eq.~11! suggests to introduce th
elasto-optical constant

aVV~ t !5
2

3
aVH~ t !2

„puR8~ t !us00…

N
. ~18!

It has identical properties asaVH(t) since the tensor vari-
ables entering its definition again are real with even ti
parity. Another time-dependent coupling function aris
from the temperature fluctuations as described in Eq.~9!:

j~z!5j1z
~ePuR8~z!us00!

NT
, ~19!

where the thermodynamic derivativej5(]s00/]T)n /n
5(Qneus00)/(NT) is written, which contains the total energ
perpendicular to density fluctuations@14#. Clearly, Eq.~19!
presents a generalized time- or frequency-dependent the
dynamic derivative. The scalar variables entering its time
9-4
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frequency-dependent term are real with even time parity,
j9(v)/v consequently is an even function ofv. The consti-
tutive equation coupling the fluctuating hydrodynamic va
ables intodeVV(q,t), from Eq. ~7!, becomes

^deVV~q,z!&5~]s00/]n!T^dn~q,z!&1j~z!^dQ~q,z!&

1aVV~z!q^d j L~q,z!&, ~20!

where the thermodynamic relation (nus00)
5NnkT(]s00/]n)T is used. Collecting the terms in Eq.~5!
one obtains when applying the mass-conservation law, wh
gives q2Cj j

L (q,z)5qzCn j
L (q,z)5z2Cnn(q,z)1zNnkT and

qCQ j
L (q,z)5zCQn(q,z),

„eVV~q,z!ueVV~q!…5S~z!14T ~z!/31zaVV
2 ~z!NnkT

12~]s00/]n!TaVV~z!NnkT

1@~]s00/]n!T1zaVV~z!#2Cnn~q,z!

1j~z!2CQQ~q,z!12@~]s00/]n!T

1zaVV~z!#j~z!CnQ~q,z!. ~21!
n
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HereCnn(q,z) denotes the density-density correlation fun
tion, CQQ(q,z) the temperature-temperature correlati
function, etc; see Appendix B. Equation~21! is our principal
result for theVV spectrum. It extends the conventional h
drodynamic spectra to arbitrary frequencies. The sma
wave–vector singularities are encoded in the generalized
drodynamic correlation functionsCab(q,z), which are
determined by the true resolventR(z), and can thus e.g., b
obtained from simulations.

From the information on the depolarized and the polariz
spectrum also theI HH spectrum can be obtained even thou
it is not a simple linear combination. The fluctuating variab
coupling to the distinct variables for theHH scattering in the
geometry of Appendix A is given by

^deHH~q,z!&52cosu ~]s00/]n!T^dn~q,z!&2cosu j~z!

3^dQ~q,z!&2@aHH~z!cosu

2aVH~z!#q^d j L~q,z!&, ~22!

where we abbreviatedaHH(z)5aVV(z)2aVH(z). The gen-
eral spectrum in theHH geometry now reads
„eHH~q,z!ueHH~q!…5S~z!cos2u1T ~z!S 11
1

3
cos2u D1z@aHH~z!cosu2aVH~z!#2NnkT12

]s00

]n D
T

cosu@aHH~z!cosu

2aVH~z!#NnkT1H F ]s00

]n D
T

1zaHH~z!Gcosu2zaVH~z!J 2

Cnn~q,z!1j~z!2cos2u CQQ~q,z!

12j~z!cosuH F ]s00

]n D
T

1zaHH~z!Gcosu2zaVH~z!J CnQ~q,z!. ~23!
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One notices that even for a general molecular fluid, tra
verse current fluctuations do not couple into theHH
spectrum.

D. Generalized Green-Kubo relations

Ten frequency-dependent matrix elements built with
reduced resolventR8(z) have been identified in the expre
sions for the light-scattering spectra in supercooled liqu
Five generalized transport coefficients and thermodyna
derivatives are needed in order to describe the correlator
the hydrodynamic variables@14#. They are the shear viscos
ity Ks(z), the thermal conductivityl(z), the dynamic spe-
cific heatcV(z), the dynamic tension coefficientb(z), and
the longitudinal stress relaxation kernelKl(z) ~explicit ex-
pressions are summarized in Appendix B!. The remaining
five frequency-dependent kernels encode the details of
light-scattering process:S(z), T(z), aVH(z), aVV(z), and
j(z).

These expressions involving reduced resolvents are
suitable for approximations, since they do not exhibit hyd
dynamic singularities. In order to determine them from oth
s-

e

s.
ic
of

he

ry
-
r

theoretical approaches or from computer simulations, it
however, more convenient to find a formulation in terms
correlation functions involving the full dynamics. For th
considered cases atq50, this is made possible by the con
servation laws that allow one to derive Green-Kubo relatio
for the memory functions or transport coefficients express
them in terms of autocorrelation functions of the correspo
ing fluxes or time integrals thereof@15,16#. From the identity
@14#:

~X̃uR8~z!uỸ!5~X̃uR~z!uỸ!1„X̃u@12R8~z!L#

3PR~z!P@LR8~z!21#uỸ…, ~24!

one observes that the reduced matrix elements can be re
ten as full matrix elements and correlation functions of t
hydrodynamic variables contained inPR(z)P with
frequency-dependent coefficients. Since forq→0 the coeffi-
cients involvingLnq andLj q vanish due to particle and mo
mentum conservation, only the temperature fluctuations c
tribute to the frequency dependence of the coefficients.
derive a generalized Green-Kubo relation, we only need v
ablesX̃5QX and Ỹ5QY, respectively. Therefore all stati
9-5
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couplingsX̃uPR(z)P to the hydrodynamic variables in Eq.~24! will vanish too and the generalized Green-Kubo relation
given by

„XuR8~z!uY…5„QXuR~z!uQY…1
$~XuQeP!1z„XuR8~z!ueP

…%$~QePuY!1z„ePuR8~z!uY…%
NTzcV~z!

for q→0. ~25!
bo

e

t

in
rt
c-

io

he

e

is
l-

ra

-

ide
ds
en-

r-
ck-

be

e

Here we made use of Eqs.~4! and~B3! in the limit q→0 and
of the identityR8(z)LQ5Q1zR8(z). Rotational invariance
implies that the second term in Eq.~25! is nonzero only for
scalar variablesX,Y. Thus, e.g., the standard Green-Ku
relations for the shear viscosity,X5Y5t20, and heat diffu-
sion, X5Y5 j e

L , are found. Moreover, it follows that in th
elasto-optic constantaVH(z), Eq. ~15!, and in the tensor
background spectrumT(z), Eq. ~6!, the reduced resolven
can be replaced with the full dynamics.

In order to obtain tractable expressions for the remain
kernels and make contact with the standard Kadanoff-Ma
approach@16,18#, we define another, the conventional, flu
tuating temperature bycVT̃(q)5e(q)2n(q)(eun)/(nun),
with normalization (T̃(q)uT̃(q))5NT/cV . Also, let Q̃ de-
note the projector orthogonal to density, currents, andT̃(q).
ChoosingX5Y5eP in Eq. ~25! one finds

„QeP~z!uQeP
…

NT
5

cV~z!2cV

z
2

@cV~z!2cV
0 #2

zcV~z!
. ~26!

Since QeP5Q̃eP1(cV2cV
0)T̃ the left-hand side implicitly

contains hydrodynamic poles due to energy conservat
However,

„QeP~z!uQeP
…

NT
5

„Q̃eP~z!uQ̃eP
…

NT
2

~cV2cV
0 !2

zcV
, ~27!

and, according to Kadanoff-Martin, the first term on t
right-hand side is free of poles in the limitz→0 @18#. Com-
bining Eqs.~26! and ~27! one derives

cV~z!5cV

~cV
0 !2

~cV
0 !22zcV„Q̃eP~z!uQ̃eP

…/~NT!
. ~28!

In the liquid phase the dynamic specific heat attains its th
modynamic valuecV(z)→cV for z→0. Equation~28! dem-
onstrates explicitly that the Go¨tze-Latz resolventR8(z) in-
deed is devoid of all hydrodynamic singularities and
compatible with the conventional Kadanoff-Martin forma
ism. It differs in an explicit frequency dependence ofcV(z),
which arises from the splitting of the conventional tempe
ture fluctuationsT̃(q,t) into fast, kinetic onesQ(q,t) and
structural slow ones.

Similarly, substitutingX5p andY5eP in Eq. ~25! yields

„Qp~z!uQeP
…

NmT
5

b~z!2b

z
2

@b~z!2b0#@cV~z!2cV
0 #

zcV~z!
,

~29!
06120
g
in

n.

r-

-

where b05(puQneK)/(NmT). Since Qp5Q̃p

1mb0Q̃eP/cV
01m(b2b0)T̃, the left-hand side can be writ

ten as

1

NmT
„Qp~z!uQeP

…5
1

NmT
@Q̃p~z!uQ̃eP#

1
b0

NTcV
0
„Q̃eP~z!uQ̃eP

…

2
~b2b0!~cV2cV

0 !

zcV
. ~30!

Again the memory kernels appearing on the right-hand s
are regular in the low-frequency limit. Collecting terms lea
to the generalized Green-Kubo formula for the dynamic t
sion coefficient

b~z!5b
cV~z!

cV
1

cV~z!

cV
0

z
„Q̃p~z!uQ̃eP

…

NmT
. ~31!

In a similar fashion the corresponding Green-Kubo fo
mulas for the dynamic temperature coupling, the scalar ba
ground spectrum, the remaining term contributing toaVV(z),
and the longitudinal stress-stress correlation function can
obtained:

j~z!5j
cV~z!

cV
1

cV~z!

cV
0

z
„Q̃s00~z!uQ̃eP

…

NT
, ~32!

S~z!5
NTj~z!2

zcV~z!
2

NT

zcV
j21„Q̃s00~z!uQ̃s00…, ~33!

~puR8~z!us00!

N
5

mb~z!T

zcV~z!
j~z!2

mbT

zcV
j1

„Q̃p~z!uQ̃s00…

N
,

~34!

Kl~z!

nm
5

mT

zcV~z!
b~z!22

mT

zcV
b21

„Q̃tL~z!uQ̃tL
…

Nm
. ~35!

In particular, the last term on the right-hand side of Eq.~35!

is related to the longitudinal viscosityih l5„Q̃tL(z
→0)uQ̃tL

…n/N. Therefore in the low-frequency limit wher
cV(z)5cV1 izcV9 , andb(z)5b1 izb9 one finds

Kl~z→0!

nm
52 imTb2

cV9

cV
2

12imTb
b9

cV
1 i

h l

nm
. ~36!
9-6
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To summarize, all ten frequency-dependent kernels ca
expressed in terms of the full resolventR(z), and therefore
they can be obtained directly from molecular-dynam
simulations.

IV. DISCUSSION

A. Depolarized spectra

The depolarized frequency-dependent spectrum, Eq.~17!,
shall be discussed in detail as it provides the most com
expression but also exhibits clear qualitative changes w
supercooling the liquid. It consists of three frequenc
dependent contributions, a background, the Pockels cons
and the transverse current correlator.

The current correlators can be taken from theories for
dynamics of the liquid under study or from computer sim
lations. Alternatively, the generalized hydrodynamic a
proach shifts the problem of calculating the transverse c
relator to the problem of calculating correlations of t
transversal-stress tensor, namely, the frequency-depen
shear modulus,Ks(z)5„t20uR8(z)ut20…n/N, where the resol-
vent devoid of hydrodynamic fluctuations from Eq.~2! ap-
pears again. The separation of the hydrodynamic poles f
structural relaxation thus is achieved leading to@14#:

Cj j
T ~q,z!5

2~N/m!

z1q2Ks~z!/nm
. ~37!

The result from hydrodynamic theory for the depolariz
light scattering from equilibrium molecular liquids can b
obtained if the frequency dependence of memory functi
built with the reduced resolventR8(z) is neglected by using
the Markovian low-frequency limit. Then the depolarize
Pockels’ constant becomes purely imaginary:

aVH~z!→ iaVH9 5 i E
0

`

dt aVH~ t ! for z→0. ~38!

Therefore, and using the standard hydrodynamic result
the shear viscosity,Ks(z→0)→ ihs , one recovers the resu
for the depolarized spectrum first obtained within simp
models in Refs.@2,3#:

I VH~q,u,v!hy. l.5T 9~v50!2q2~aVH9 !2cos2
u

2

3
Nq2hs /~nm2!

v21~q2hs /nm!2
. ~39!

The transverse momentum diffusion cuts a central line
half-width q2hs /(mn) and amplitude proportional to
(aVH9 cosu/2)2nN/hs out of a flat background. Note, tha
within hydrodynamics the background is structureless,
that the spectrum is positive owing to an element
Schwartz inequality, (t20ut20)(t20ut20)>(t20ut20)

2.
The structural relaxation of liquids cooled down to a

below the melting temperature, slows down strongly, and
frequency dependence of the memory functions with redu
06120
be
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ct
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resolvent, can no longer be neglected; for a discussion
structural relaxation, see e.g., the review@21#. The result in
Eq. ~17! can handle this situation, as the memory functio
built with R8(z)—there are 3 in Eqs.~17! and ~37!—may
either be modeled appropriately or can be taken from ot
theories or simulations. Within the generalized hydrod
namic approach, a glass or amorphous solid is obtai
whenever a structural relaxation process, with time scaleta ,
is slow compared to the hydrodynamic frequencies. Assu
ing further that the dynamics inR8(t) at shorter times, de-
noted bytb , can be neglected for this frequency range, th
the memory functions in Eq.~17! can be approximated by

Ks~z!→ 2G`

z
1 iGs , aVH~z!→

2aVH
`

z
, ~40!

for 1/ta!uzu!1/tb . This is equivalent to time-independen
values, Ks(t)5G` and aVH(t)5aVH

` for tb!t !ta .
Therefore, the poles in Eq.~40! are called nonergodicity
poles as they describe frozen–in, nonrelaxing compone
G`5mncT

2 is the glassy shear modulus familiar from Ma
well’s model andaHV

` is the Pockels’ constant~often denoted
P44) quantifying the elasto–optic coupling in the glass@7#.
WhereasG` andGs need to be positive, the sign ofaHV

` is
undetermined; a next-to-leading imaginary part inaHV exists
in principle but does not contribute to the spectrum in t
hydrodynamic limit. Equations~17! and ~40! predict for the
hydrodynamic glass spectrum:

I VH~q,u,v!hy. g5T g91S q cos
u

2
aVH

` D 2

3
q2Gs /~mn!

~v22q2cT
2!21~vq2Gs /nm!2

.

~41!

Two transverse phonon peaks characterized by the transv
sound velocitycT , and a width}q2Gs , appear, which are
described as damped harmonic oscillations. The backgro
consists of a central line, which cannot be resolved an
structureless continuumT(z)52T` /z1 iT g9 .

Note, that both hydrodynamic expressions, Eqs.~39! and
~41!, do not fulfill the sum rule for the total intensity, Eq
~13!, and imply wave-vector-dependent total scattered int
sities. The reasons, of course, are the Markovian approxi
tions in Eqs.~17! and ~40!, which are restricted to describ
the dynamics in the hydrodynamic range. Nontrivial spec
obtained in glasses on frequency scales characterized btb
@22# also require more elaborate expressions for the mem
functions in Eq.~17!.

For temperatures around the liquid-to-glass crossove
Tc , neither the assumptiontav@1, nor the estimatetbv
!1 hold and the depolarized spectra exhibit anomalies@23#.
The mode coupling theory of the structural relaxation th
suggests modeling the reduced resolvent asKs(z)'2G`@1
2(12 izta)2bCD1(2 izt0)a#/z for T'Tc , and similar ex-
pressions for the other two memory functions. Whereas
Cole-Davidson behavior~the first two terms! is a ~rough!
9-7
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model of thea process, andbCD—as well asta—will differ
for different resolvent matrix elements, the power law w
exponenta describes the universal ‘‘critical’’ decay close
the transition. Heret0 is a microscopic time and the expone
a and the~true, universal! exponentb of the high-frequency
von Schweidler wing of thea process,Ks(1/ta!z!1/tb)
;(2 izta)2b/z, are related; see e.g., the review@21# for fur-
ther information.

B. Polarized spectra

The most prominent feature of the polarized spectrum,
Brillouin peaks, arise from propagating sound waves. Up
cooling the liquid, structural relaxation manifests itself pr
dominately by a gradual change of the sound velocity a
the damping constant. Considering the enormous increas
the transport coefficients, e.g., the longitudinal viscosity t
describes the damping in the liquid, this clearly points o
the necessity to consider the frequency dependence o
reduced resolvent as done in generalized hydrodynam
Furthermore, the couplingsaVV(z),j(z) as well as the back
ground spectraS(z),T (z) exhibit nontrivialz dependencies
in the frequency regime of interest.

The structural relaxation of the Pockels’ constantaVV(z)
~with numerically different constants! can be modeled a
y

io

-
y-

a

th
o

o

06120
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given in Eqs.~38! and~40! and as described at the end of th
previous section. The explicit factorz in the frequency-
dependent part inj(z), Eq. ~19!, cancels a possible none
godicity pole. The coupling to temperature fluctuations int
polates smoothly between its low-frequency thermodyna
value (]s00/]T)n and a high-frequency coupling,j` , char-
acteristic for a glass. A renormalization also appears in
effective coupling to the density fluctuations, which in E
~21! is described by the Pockels’ constantP125(]s00/]n)T

1zaVV(z) and in Eq.~23! by (P12cosu2P44), respectively,
where P445zaVH(z). Note, that the frequency-depende
renormalization of (]s00/]T)n in Eq. ~19! vanishes, if only
the hydrodynamic fluctuations, density and temperature, c
tribute to the scalar scattering; then alsoaVV(z)5 2

3 aHV(z).
In order to obtain the spectrum in the true hydrodynam

limit one substitutes the appropriate correlation functions
see Appendix B—and replaces all memory functions w
their low-frequency limits; only incV(z), b(z), and j(z)
linear terms inz need to be kept as can be seen from E
~28!, ~31!, and ~32!. There are the three familiar hydrody
namic resonances superimposed on the Raman backgro
the Brillouin doublet of sound modes and the Rayleigh h
pole. The spectrum is obtained from determining the resid
of these poles to lowest order in frequency and wave vec
I VV~q,u,v!hy.l .5„Q̃s00~v50!uQ̃s00…914T 9~v50!/31NnkTP 12
2 FXBr

g

c2q4G l

~v22c2q2!21~vq2G l !
2

1XR
g21

g

q2DT

v21~q2DT!2G , ~42!
to

the

ve-
se
n

uid.

-

uc-
where the adiabatic sound velocityc5Ag/(mnkT), the lon-
gitudinal sound dampingG l5DT(g21)1h l /(mn), and the
heat diffusion constantDT5l9/cP appear~see Appendix B
for details!. The Pockels constant is given by the thermod
namic derivative,P125]s00/]n)T , and the flat background
consists of scalar and tensor parts. Neglecting contribut
from temperature fluctuations,XR5XBr51, one regains the
well-known result for light scattering from~hydrodynamic!
density fluctuations@1,7,15#. Then, the Landau-Placzek re
sult (g21) is recovered for the relative intensity of the Ra
leigh to the Brillouin lines, whereg5cP /cV denotes the ra-
tio of the isobaric to isochoric heat capacity@1,7,15#. In the
general case, scattering from temperature fluctuations le
to ~presumably small! corrections: XR5@12(c0

2/b)
3(j/P12)#2 andXBr5@11(g21)(c0

2/b)(j/P12)#2.
For the glass,vta@1, actually the identical formula

holds where, however, the isothermal compressibility,
sound velocity and damping constants, as well as the c
plings and the background—compare Eqs.~39! and ~41!—
are renormalized. The high-frequency values of the mem
functions appear in the formally identical definitions ofc,
DT , and G l , where, in the frequency window 1/ta!v
-

ns

ds

e
u-

ry

!1/tb , simple Markovian expressions likecV(z)5cV
`

1 izcV,g9 are appropriate for ergodic matrix elements@cV(z),
b(z), j(z), andl(z)], and frozen-in components, leading
Kl(z)52Kl

`/z1 iK l ,g9 , appear inKl(z), aVV(z), and in the
Raman background lines. Thus, e.g., the expression for
Pockels constant becomes:P 12

` 5]s00/]n)T2aVV
` . A non-

trivial renormalization appears in the isothermal sound
locity or equivalently the isothermal compressibility, becau
of the frozen structural relaxation in the longitudinal frictio
function:

~cT
`!25

1

mnkT
`

5c0
21

Kl
`

mn
, ~43!

as first observed by Mountain@6# and predicted from micro-
scopic expressions by the mode-coupling theory@21#. The
glass is less compressible than the corresponding liq
Thus the glass sound velocity is c`5Ag`cT

`

5A(cT
`)21mT(b`)2/cV

`. Note that the reduction of the Bril
louin and Rayleigh intensities described by Eqs.~42! and
~43! is caused by the appearance of frozen-in density fl
9-8
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tuations ~an elastic line called the Mountain line! that
contribute the missing weight, NnkT@(]s00/]n)T

2

2(c0 /cT
`)2(P 12

` )2#.
For the HH spectrum let us just mention that foru

5p/2, Eq.~23! simplifies considerably, since the scalar sc
tering drops out completely. For frequenciesvta!1,
aVH(z)→ iaVH9 holds again, and one finds

I HHS q,u5
p

2
,v D

hy

5T 9~v50!2~vaVH9 !2Cnn~q,v!9.

~44!

The hydrodynamic modes are suppressed by a factor ofv2,
e.g., the Brillouin line cuts a Lorentzian with half-widthq2G l

and amplitudeN(aVH9 )2/(mG l) out of a flat background.

C. Intensity ratios

Interesting intensity ratios can be constructed if the sc
tered intensities with different polarizations of the light b
fore and after the scattering process are considered. The
dard depolarization ratio compares the off-resonancev
@cq) frequency-dependent background intensities negl
ing all hydrodynamic modes:

I VH~q,u,v!

I VV~q,u,v!
5

T 9~v!

~Q̃s00~v!uQ̃s00!914T 9~v!/3
<3/4.

~45!

The expected depolarization ratio 3/4 is recovered if the o
scalar scattering mechanisms are density and temper
fluctuations.

V. COMPARISON WITH PHENOMENOLOGICAL
APPROACHES

It appears worthwhile to discuss earlier phenomenolog
approaches within our general framework. Again we sh
concentrate on the depolarized spectrum, which has bee
focus of a long list of theoretical descriptions.

The original approach of Andersen and Pecora@2# and
Keyes and Kivelson@3# captures the spectra as predicted
hydrodynamic theory. The two or three variable approac
in Refs. @2,3# go beyond hydrodynamics as they model t
background spectrum as a~sum of! Lorentzian~s!. Vaucamps
et al. extended this approach by adding a further Maxw
relaxation to the shear modulus@8#. More elaborate models
which identify slower and faster relaxing processes in
shear modulusKs(t), were suggested in Refs.@9–11#. Mod-
els with more than two variables can be brought into a fo
suggested by a simple viscoelastic approximation~VA ! to
our general result, Eq.~17!:

I VH
VA ~z!}

21

z1 iGT
1

1

@z1 igVH#2

2A

z2q2cT
2/@z1 i /ts#

,

~46!

where A5(qaVH
` cosu/2)2N/(mT `) and Eq. ~46! gives a

simplified a-process only description akin to Maxwell’
06120
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model. The multivariable phenomenological models, ho
ever, rest on specific assumptions about the rotatio
translational coupling in order to obtain closed equations
motion. Such additional equations, which are not fully co
straint by hydrodynamics or symmetry, are not required
our approach. Because of their specific choices, the mo
in Refs. @9–11# introduced constraints on the coupling p
rameters in order to describe spectra in supercooled liqu
see Ref.@13# for a detailed discussion of this aspect. No
that thea-process only model, Eq.~46!, is restricted to low
frequencies as can be seen from the vanishing dampin
the shear waves in glass, see Eq.~41!.

The introduction of retardation effects via memory fun
tions in the work of Wang@10# and Dreyfuset al. @12,13#
removed constraints on the coupling parameters, and, wi
the latter phenomenological approach, an expression
mally equivalent to Eq.~17! was given; for linear molecules
corresponding microscopic expressions have been sugge
@24#.

VI. CONCLUSIONS

In this paper we discussed the light-scattering spectra
a one-component molecular liquid incorporating slow stru
tural relaxation and thus extending the description to sup
cooled liquids and glasses. In contrast to earlier phenome
logical approaches, no assumptions are made on the na
of the scattering mechanisms nor on the origin of the str
tural relaxation. Molecules of arbitrary shape and polariza
ities are considered.

From our exclusive use of symmetry arguments it follo
that any phenomenological approach complying with gen
alized hydrodynamics, regardless of the physical mec
nisms assumed or nonhydrodynamic variables includ
must obey the formulas of Secs. II and III. For an analysis
experimental data, our paper provides a framework clarify
the number of required frequency-dependent kernels, t
interpretation, and their most general functional forms.

Our results are akin to the theory of neutron scatter
where it is shown that, in general, density fluctuation fun
tions are measured without the need for special models
their dynamics@15,16#. For example, Eqs.~17! and ~37! in-
dicate how the shear viscosity can be measured by light s
tering, without specifying what microscopic dynamic
mechanisms contribute to the decay of transverse curren

We give explicit microscopic formulas for the back
ground spectrum and the elasto-optical constants that
serve as a starting point for approximations once a choice
the scattering mechanism is made. For isotropic partic
considering dipole-induced–dipole scattering this has b
performed in Ref.@19#. Alternatively, computer simulations
could be employed. Our central assumption is to consi
systems characterized by short-ranged equilibrium corr
tions. Thus we can neglect the wave-vector dependenc
matrix elements describing the structural relaxation lead
to Green-Kubo-like formulas for the memory functions
familiar from simple hydrodynamics.

Whereas previous approaches were mainly concer
with the nature of the depolarized spectrum and correspo
ingly therefore attribute the scalar fluctuations to a combi
9-9
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tion of density and temperature fluctuations, we carefu
make the distinction between dielectric fluctuations coup
to hydrodynamic modes and the ones orthogonal ther
Consequently one obtains a theory that combines con
tional Brillouin and Raman scattering. For example, mole
lar vibrations or rotational motion give rise to scalar as w
as tensor scattering, which appears as background to the
drodynamic resonances and are included in our framewo

An important aspect of our results is that no assumpti
on, e.g., translational-rotational coupling or about the c
crete description of the structural relaxation were necess
The general aspects of the light-scattering spectra w
worked out and correlation functions were defined, wh
can, in principle, be measured experimentally, and wh
contain the general information about the dynamics of
sample under study.

ACKNOWLEDGMENTS

Valuable discussions with Professor W. Go¨tze and Profes-
sor H. Z. Cummins, and their helpful comments on t
manuscript, are gratefully acknowledged. This work w
supported by the Deutsche Forschungsgemeinschaft u
Grant Nos. Fr 417/2 and Fu 309/3.

APPENDIX A: SCATTERING GEOMETRIES

The scattering plane, i.e., the plane that contains both
wave vectorsk i ,k f of the incident and scattered wave,
chosen as thexz plane. The direction of the momentum
transferq5k i2k f is taken to be (0,0,2q). Since we con-
sider only small frequency shiftsuk i u.uk f u the scattering
angleu5/(k f ,k i) is related to the momentum transfer v
q52kisin(u/2). The dielectric fluctuations corresponding
the conventional scattering geometries, namely, polariza
perpendicular~V! to and in the scattering plane (H), are then
given by @1#

deVV~q!5deyy~q!,

deVH~q!5dexy~q!sin
u

2
2deyz~q!cos

u

2
,

deHV~q!5dexy~q!sin
u

2
1deyz~q!cos

u

2
,

deHH~q!5dexx~q!sin2
u

2
2dezz~q!cos2

u

2
. ~A1!

The scattering intensities are expressed via the spectra o
dielectric fluctuations

I io~q,u,v!5„e io~q,v!ue io~q!…9

5E
0

`

dt cos~vt !„e io~q,t !ue io~q!…. ~A2!

The scattering intensities obey the sum rule
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1

pE2`

`

dvI io~q,u,v!5I io~q,u!, ~A3!

where the total intensitiesI io(q,u) are determined by the
thermal fluctuation of the dielectric tensors

I io~q,u!5„e io~q,t50!ue io~q!…5
^ude io~q!u2&

kBT
. ~A4!

APPENDIX B: GENERALIZED HYDRODYNAMICS

The correlation functions in the generalized hydrod
namic limit can be expressed as@14#

Cnn~q,z!52NnkT /$z2~c0q!2/$z1q2Kl~z!/~mn!

2q2mTb~z!2/@zcV~z!1q2l~z!#%%, ~B1!

CnQ~q,z!52NTq2b~z!/$@z22~c0q!21zq2Kl~z!/~mn!#

3@zcV~z!1q2l~z!#2q2mTzb~z!2%, ~B2!

CQQ~q,z!52NT/$zcV~z!1q2l~z!2q2mTzb~z!2/

@z22~c0q!21zq2Kl~z!/~mn!#%. ~B3!

Herec05(mnkT)21/2 denotes the isothermal sound velocit
Kl(z)5(tLuR8(z)utL)n/N the longitudinal stress relaxatio
kernel, andl(z)5( j e

LuR8(z)u j e
L)/(NT) the thermal conduc-

tivity. The frequency-dependent expansion coefficient a
specific heat are given by

b~z!5b1z„puR8~z!ueP
…/~NmT!, ~B4!

cV~z!5cV1z„ePuR8~z!ueP
…/~NT!, ~B5!

whereb5(puQne)/(NmT), cV5(euQne)/(NT) retain their
standard values.

There appear three hydrodynamic modes in the liq
state. First, the sound doubletz56cq2 iq2G l /21O(q3)

with the adiabatic sound velocity,c25c0
21mTb2/cV and

G l5
Kl9

nm
1

mTb2

cV
F l9

c2cV

1
cV9

cV
22

b9

b G , ~B6!

where we have writteniK l95Kl(z→0),il95l(z→0),cV(z
→0)5cV1 izcV9 , b(z→0)5b1 izb9. In the generalized
hydrodynamic approach the sound damping consists of
parts: viscous friction, losses at conversion from mechan
into thermal energy, losses from storing and extracting th
mal energy, and thermal diffusion. Although the express
looks unfamiliar, the associated Green-Kubo formula, E
~36!, shows that the longitudinal viscosity appears, leading
the well-known result@7,15#. Second, there is the heat mod
z52 iq2DT , where the thermal diffusion constant reads
9-10
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DT5
c0

2

c2

l9

cV
5

l9

cP
. ~B7!

For the second equality in Eq.~B7! we made use of stan
dard thermodynamic transformation formulas. The merit
the generalized hydrodynamic approach lies in the separa
of the long-wavelength and low-frequency properties@14#.
The only wave–vector dependence arises from the conse
tion laws. The structural relaxation is captured in generali
transport and thermodynamic derivatives, which exhibi
significant frequency dependence in the regime of intere

Let us finally highlight the advantage of measuring t
fluctuating temperature from the fast kinetic-energy fluct
tions by quoting the resulting fluctuations of the heat ene
q̃(q)5Qne(q)2Tmbn(q) @15,18#. Using the identity Eq.
~24! from Ref. @14# one immediately finds:

Cq̃q̃~q,z!5
2NT@cP2cV~z!2~cP2cV!b2~z!/b2#

z

1cV
2~z!CQQ~q,z!22mTb~z!cV~z!CnQ~q,z!

1@mTb~z!#2Cnn~q,z!, ~B8!

which in the fluid only exhibits the heat mode characteriz
by Eq. ~B7!. In the nonergodic glass, an amplitudeq̃`51
2cV

`g`/cVg of the heat fluctuations arrests together with t

structural motion, and only the remaining part, 12q̃`, re-
laxes via heat diffusion characterized byDT

` .

APPENDIX C: SPECIAL SCATTERING MECHANISMS

In order to show that all contributions to the ligh
scattering spectra discussed in the text will be presen
general, and also in order to exemplify how our general f
mulas can be used, specific scattering mechanisms are li

~1! If single scattering processes from biaxial~likely chi-
ral! molecules are considered, the background spect
arises from the two irreducible spherical tensors:

s005
1

3
~axx1ayy1azz!n~q!, q→0, ~C1!

t2n5
1

A8
~axx2ayy!(

i
@Dn,2

(2)~V i !1Dn,22
(2) ~V i !#

1
1

A12
~2azz2axx2ayy!(

i
Dn,0

(2)~V i !,

where the scalar dynamics follows the density fluctuatio
and the Wigner functionsDnm

( j ) (V) capture the dynamics o
the molecular orientation in terms of Euler anglesV
5(w,q,x) @25#.

~2! In the special case of linear molecules,axx5ayy , the
tensor fluctuations simplify
06120
f
on

a-
d
a
.

-
y

d

in
-
ed:

m

s

t2n5A4p

15
~azz2axx!(

i
Y2n~u i ,w i !, ~C2!

and the standard spherical harmonics appear@1#.
~3! In the case of optically isotropic particles, depolariz

scattering can arise from first order dipole-induced-dip
~DID! scattering@26#:

t2n5
a2

A2
E d3k

~2p!3
n~2k!T2n~ k̂!n~k!, ~C3!

where T2n( k̂)524pA8p/15Y2n( k̂) is the static dipole
tensor.

~4! If second-order DID scattering of isotropic particles
considered, then the scalar scattering consists of a contr
tion coupling to the density fluctuations, Eq.~C1!, and of
another nonhydrodynamic contribution:

s005
a3

3 (
m

E d3kd3p

~2p!6
~21!mT2,m~ k̂!

3T2,2m~ p̂!n~2k2p!n~k!n~p!, ~C4!

t2n52A35

24
a3(

m
~21!nS 2 2 2

m n2m 2n D
3E d3kd3p

~2p!6
T2,n2m~ k̂!T2,m~ p̂!n~2k2p!n~k!n~p!.

~C5!

This implies that in this case the depolarization ratio fro
Eq. ~45! is smaller than the expected value 3/4. Furtherm
the scalar fluctuations overlap with the orthogonalized
ergy, i.e., (s00uQne) is nonzero, and the coupling of dielec
tric fluctuations to temperature are relevant. In particular, o
finds that even in the hydrodynamic limit for a liquid, th
Landau-Placzek ratio is not fulfilled.

~5! The lower depolarization ratio also already arises fro
first order DID of linear molecules:

s005
2

3
a~azz2axx!(

m
~21!m

3E d3k

~2p!3
T2,2m~ k̂!n~2k!n2m~k!, ~C6!

t2n52A35

6
a~azz2axx!(

m
E d3k

~2p!3
~21!n

3S 2 2 2

m n2m 2n D T2,n2m~ k̂!n~2k!n2m~k!,

~C7!
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where the fluctuating tensor density readsn2m(k)
5A8p/15( iY2m(u i ,w i)exp(2ik•r i).

~6! If the molecules are not considered as rigid there m
be Raman active modes due to intramolecular vibrations
Qa,i is the vibrational coordinate and (]a/]Qa) the corre-
sponding change of the polarizability for modea there is a
contribution to the scalar dielectric fluctuations
d

J.

i,

i,

06120
y
If

s005(
i

(
a

]a

]Qa
Qa,i . ~C8!

Here the sums run over all molecules and Raman mode
similar expression can be derived for the dielectric ten
fluctuations.
y,

.
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